The antihyperglycemic drug alpha-lipoic acid stimulates glucose uptake via both GLUT4 translocation and GLUT4 activation: potential role of p38 mitogen-activated protein kinase in GLUT4 activation.
نویسندگان
چکیده
The cofactor of mitochondrial dehydrogenase complexes and potent antioxidant alpha-lipoic acid has been shown to lower blood glucose in diabetic animals. alpha-Lipoic acid enhances glucose uptake and GLUT1 and GLUT4 translocation in 3T3-L1 adipocytes and L6 myotubes, mimicking insulin action. In both cell types, insulin-stimulated glucose uptake is reduced by inhibitors of p38 mitogen-activated protein kinase (MAPK). Here we explore the effect of alpha-lipoic acid on p38 MAPK, phosphatidylinositol (PI) 3-kinase, and Akt1 in L6 myotubes. alpha-Lipoic acid (2.5 mmol/l) increased PI 3-kinase activity (31-fold) and Akt1 (4.9-fold). Both activities were inhibited by 100 nmol/l wortmannin. alpha-Lipoic acid also stimulated p38 MAPK phosphorylation by twofold within 10 min. The phosphorylation persisted for at least 30 min. Like insulin, alpha-lipoic acid increased the kinase activity of the alpha (2.8-fold) and beta (2.1-fold) isoforms of p38 MAPK, measured by an in vitro kinase assay. Treating cells with 10 micromol/l of the p38 MAPK inhibitors SB202190 or SB203580 reduced the alpha-lipoic acid-induced stimulation of glucose uptake by 66 and 55%, respectively. In contrast, SB202474, a structural analog that does not inhibit p38 MAPK, was without effect on glucose uptake. In contrast to 2-deoxyglucose uptake, translocation of GLUT4myc to the cell surface by either alpha-lipoic acid or insulin was unaffected by 20 micromol/l of SB202190 or SB203580. The results suggest that inhibition of 2-deoxyglucose uptake in response to alpha-lipoic acid by inhibitors of p38 MAPK is independent of an effect on GLUT4 translocation. Instead, it is likely that regulation of transporter activity is sensitive to these inhibitors.
منابع مشابه
The AMP-activated protein kinase activator AICAR does not induce GLUT4 translocation to transverse tubules but stimulates glucose uptake and p38 mitogen- activated protein kinases and in skeletal muscle
The AMP-activated protein kinase (AMPK) pathway participates in the metabolic effects of contraction on muscle glucose uptake. We have shown that contraction increases both GLUT4 translocation to the cell surface and p38 mitogen-activated protein kinase (p38 MAPK) activity. The latter pathway may be involved in the activation of GLUT4. Here we investigated whether the AMPK activator AICAR incre...
متن کاملGLUT4 translocation precedes the stimulation of glucose uptake by insulin in muscle cells: potential activation of GLUT4 via p38 mitogen-activated protein kinase.
We previously reported that SB203580, an inhibitor of p38 mitogen-activated protein kinase (p38 MAPK), attenuates insulin-stimulated glucose uptake without altering GLUT4 translocation. These results suggested that insulin might activate GLUT4 via a p38 MAPK-dependent pathway. Here we explore this hypothesis by temporal and kinetic analyses of the stimulation of GLUT4 translocation, glucose upt...
متن کاملDifferential effects of phosphatidylinositol 3-kinase inhibition on intracellular signals regulating GLUT4 translocation and glucose transport.
Phosphatidylinositol (PI) 3-kinase is required for insulin-stimulated translocation of GLUT4 to the surface of muscle and fat cells. Recent evidence suggests that the full stimulation of glucose uptake by insulin also requires activation of GLUT4, possibly via a p38 mitogen-activated protein kinase (p38 MAPK)-dependent pathway. Here we used L6 myotubes expressing Myc-tagged GLUT4 to examine at ...
متن کاملNeed for GLUT4 activation to reach maximum effect of insulin-mediated glucose uptake in brown adipocytes isolated from GLUT4myc-expressing mice.
There is a need to understand whether the amount of GLUT4 at the cell surface determines the extent of glucose uptake in response to insulin. Thus, we created a heterozygous mouse expressing modest levels of myc-tagged GLUT4 (GLUT4myc) in insulin-sensitive tissues under the control of the human GLUT4 promoter. Insulin stimulated 2-deoxyglucose uptake 6.5-fold in isolated brown adipocytes. GLUT1...
متن کاملSustained exposure of L6 myotubes to high glucose and insulin decreases insulin-stimulated GLUT4 translocation but upregulates GLUT4 activity.
Hyperglycemia and hyperinsulinemia are cardinal features of acquired insulin resistance. In adipose cell cultures, high glucose and insulin cause insulin resistance of glucose uptake, but because of altered GLUT4 expression and contribution of GLUT1 to glucose uptake, the basis of insulin resistance could not be ascertained. Here we show that GLUT4 determines glucose uptake in L6 myotubes stabl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Diabetes
دوره 50 6 شماره
صفحات -
تاریخ انتشار 2001